
Multi-tenant Database Access Control

Haitham Yaish, Madhu Goyal
Centre for Quantum Computation & Intelligent Systems
Faculty of Engineering and Information Technology

University of Technology, Sydney
P.O. Box 123, Broadway NSW 2007, Australia

 haitham.yaish@student.uts.edu.au, madhu@it.uts.edu.au

Abstract— Storing data in the cloud is a new multi-tenant
database solution that has recently emerged to deliver
database for multiple users, who can store and access their
data over the internet. This multi-tenant database designed
to be used by multiple tenants and each tenant may have
multiple users. Therefore, this database type demands a
special multi-tenant access control model, which provides an
access control not only for multiple tenants, but also for
multiple users per tenant. In this paper, we are proposing a
multi-tenant access control model based on a multi-tenant
database schema called Elastic Extension Tables (EET). In
this model, we define access control data architecture, and
the EET access grants which can be granted to tenants’
users. Moreover, we propose an access control algorithm,
which allows users to access the data granted to them based
on a number of groups or roles assigned to these users.

Keywords- Cloud Computing, Access Control, Multi-
tenancy, Multi-tenant Database, Elastic Extension Tables.

I. INTRODUCTION

The growth of multi-tenant Cloud Computing services
draws attention to security challenges, which are emerging
due to the cloud vendor’s resource sharing [13]. It is
unlikely that the cloud users would risk their data and their
computing applications over the cloud in favour of
reducing the Total Cost of Ownership (TCO), or using a
flexible cloud service, unless the cloud service providers
provide reliable and secure services [18]. Outsourcing data
to the cloud is one of the critical security challenges
because this data is accessed among a large number of
users from different organisations [18]. There are three
data isolation approaches applied to the cloud. The first
approach is called Separate Database, which is the
simplest data isolation approach that stores each tenant
data in a separate database. The second approach is called
Shared Database - Separate Schema, which hosts all the
tenants in the same database instance, but each tenant has
his own database schema. The last approach is called
Shared Database - Shared Schema, which allows tenants to
store their data in the same database and same schema. In
other words, a given table can store different table rows
for different tenants, and a tenant ID column will
differentiate and isolate the tenant’s data [8],[9],[12],[19].
In this paper, we are focusing on the Shared Database -
Shared Schema isolation approach, which requires a high
degree of data isolation and configuration to ensure the
security and privacy of tenants’ shared data. This multi-
tenant data approach consists of two data types: shared
tenants’ data and tenants’ isolated data, by combining
these data together, tenants can have the complete data

they need [9],[12]. These multi-tenant data isolation
approaches have challenges in supporting highly
manageable database schema, and in providing
configurable database fields [5],[11],[22],[26]. These
challenges are (1) isolating tenants data by ensuring that
each tenant can access only his own data, (2) ensuring that
the tenants’ data is robust and secure, (3) optimizing
database performance [10],[5],[8],[27], (4) designing a
database structure which works with different business
domain applications [1], and (5) fulfilling different
tenants’ business requirements by using a tenant-aware
data management based on Shared Database - Shared
Schema approach [19].

There are various models of multi-tenant database
designs and techniques, which have studied and
implemented to overcome multi-tenant database challenges
like Private Tables, Extension Tables, Universal Table,
Pivot Tables, Chunk Table, Chunk Folding, and XML
[11],[14],[16],[24],[25]. Nevertheless, these techniques are
still not overcoming multi-tenant database challenges [24].
Based on this analysis, we have proposed a novel multi-
tenant database schema design to create and configure
multi-tenant applications, by introducing an Elastic
Extension Tables (EET), which consists of Common
Tenant Tables (CTT), Extension Tables (ET), and Virtual
Extension Tables (VET) [14]. This design enables tenants
creating and configuring their own virtual database schema
including a required number of tables and columns, virtual
database relationships, and assigning suitable data types
and constraints for columns during multi-tenant application
run-time execution [14]. Furthermore, EET allows tenants
to choose from three database models. The first model is
multi-tenant relational database. The second model
combines multi-tenant relational database and virtual
relational database. The third model is a virtual relational
database.

In this paper, we are proposing an access control
method called Elastic Extension Tables Access Control
(EETAC). This method permits each tenant in the multi-
tenant database to have several users with different types of
grants to access the tenant’s data. Further, we propose an
access control algorithm which allows users to access their
data that stored in columns and rows, and granted to them.
Furthermore, we ran two experiments to verify the
practicability of granting a tenant’s user accessibility on a
tenant’s table columns and rows, by using EETAC method
and the proposed Elastic Extension Tables Proxy Service
(EETPS) [15]. In these experiments, we found that the cost
of executing a query for a user who is granted access to
fewer numbers of the table columns or rows is less than the

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.131

870

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.131

870

cost of a user who is granted access to more numbers of the
table columns or rows.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the elastic
extension tables. Section IV describes the elastic extension
tables proxy service. Section V describes the elastic
extension tables access control method. Section VI
describes the columns and rows access grant algorithm.
Section VII gives our experimental results. Section VIII
concludes this paper.

II. RELATED WORK

Access control is a security topic which was started
back in the 1960s [18], and various access control models
have proposed since then such as Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and
Role Based Access Control (RBAC) [2],[16]. David
Ferraiolo and Richard Kuhn are the first who proposed the
RBAC model in 1992, which introduces the role as a new
concept to associate users to one or more roles, which are
associated with one or more permissions [7][16].

Siebel Systems [17] states that the present single-
organisation access control model is not suitable for multi-
tenant database. Accordingly, it has proposed a multi-
tenant role based access control method, which allows
having a plurality of tenants, where each tenant is the
owner of a separate virtual database. This method supports
an access control subsystem for multiple users who are
seeking a data access, where each of the users has at least
one organizational access attribute, and the data are stored
in an underlying database. The database is divided into
files; the files are divided into records within the file, and
the individual records are divided into fields. This method
is based on partitionability of the individual database files
in the database, which are based upon an attribute of
ownership and/or a granted access control.

IBM DB2 has provided several approaches of data
access in Database Management System (DBMS) level
including views, label-based access (LBAC), and row and
column access control (RCAC). The views approach adds
more management overhead because this approach uses
views instead of tables. The LBAC approach is to create
labels on tables and columns, and these labels are granted
to users or groups. IBM introduced in DB2 V10 the RCAC
approach, which represents a second layer of security, that
works with the current table security model. This approach
permits groups and users to access particular rows in a
table and specifies the data accessed from some or all the
table’s columns. Additionally, some columns’ data are
masked with nulls, a user defined mask, or a column mask
which restricts a user from accessing data within a column
[6].

Salesforce has designed and developed a storage
model to manage its virtual database structure by using a
set of metadata, universal data table, and pivot tables that
are converted to objects, objects’ fields and relationships,
and other object definition characteristics which are
tracked by Universal Data Dictionary (UDD) [3].
Saleforce is using an access control method wherein each
tenant may have one or more users. Each user or group of
users can have different types of access grants, which
permit them to access different rows including (1) the user

rows, (2) rows for users below the user in a role hierarchy,
(3) rows that are shared by a group which the user belongs
to, and (4) rows that are manually shared by another user
or group of users [4] [23].

In this section, we have discussed different multi-
tenant role based access control methods, and different
approaches to access data from a table columns and rows.
However, these access control methods and approaches
have similar assumptions, but for multi-tenant database
designs other than EET multi-tenant database schema.
Therefore, we introduce in this paper an access control
method which is suitable for the proposed EET multi-
tenant database schema [14].

III. ELASTIC EXTENSION TABLES

The proposed multi-tenant database schema is a new
way of designing and creating a multi-tenant database,
which consists of three types of tables. The first type is
Common Tenant Tables (CTT) which are shared between
tenants who are using a single instance of the multi-tenant
database. These are physical relational tables, which can
be applied to any business domain database such as
customer relationship management (CRM), accounting,
human resource (HR), or any other business domain. The
second type is Virtual Extension Tables (VET), which
allow tenants to extend on the existing business domain
database, or having their own configurable database
through creating their virtual database structures from
scratch by creating (1) virtual database tables, (2) virtual
database relationships between the virtual tables, and (3)
other database constraints. The third type is Extension
Tables (ET), which consists of eight tables that are used to
construct VETs [14]. The data architecture details of these
eight tables are listed below and shown in Fig. 1.

� The db_table Extension Table: This table allows a
tenant to create virtual tables and give them unique
names.

� The table_column Extension Table: This table
allows a tenant to create virtual columns for a
virtual table stored in the “db_table” extension
table.

� The table_row Extension Tables: The row extension
tables store records of virtual extension columns in
three separate tables. These tables are separated in
order to store small data values in the “table_row”
extension table such as NUMBER, DATE-and-
TIME, BOOLEAN, VARCHAR and other data
types. Whereas the large data values stored in two
other tables. The first one is the “table_row_blob”
extension table, which stores a uniform resource
locator (URL) for the Binary Large Objects
(BLOB). The second one is the “table_row_clob”
extension table, which stores Character Large
Objects (CLOB) values for virtual columns with
TEXT data type.

� The table_relationship Extension Table: This table
allows tenants to create a virtual relationship for
their virtual tables with any of CTTs or VETs.

� The table_index Extension Table: This table is used
to add indexes to virtual columns, which reduce the

871871

query execution time when a tenant retrieves data
from database tables.

� The table_primary_key_column Extension Table:
This table allows tenants to create single or
composite virtual primary key for virtual extension
columns stored in the “table_column" extension
table.

FIG. 1 ELASTIC EXTENSION TABLES (EET) [15]

IV. ELASTIC EXTENSION TABLES PROXY SERVICE

We have proposed a multi-tenant database proxy
service to combine, generate, and execute tenants’ queries
by using a code base solution, which converts multi-tenant
queries into traditional database queries, and execute these
traditional database queries in any Relational Database
Management System (RDBMS) [15]. This service has two
objectives, first, to enable tenants' applications retrieve
rows from CTTs, retrieve combined rows from two or
more tables of CTTs and VETs, or retrieve rows from
VETs. Second, to spare tenants from spending money and
efforts on writing Structured Query Language (SQL)
queries and backend data management codes by simply
calling functions from this service, which retrieves simple
and complex queries including join operations, union
operations, filtering on multiple properties, and filtering of
data based on subqueries results.

This service gives tenants the opportunity of satisfying
their different business needs and requirements by
choosing from any of the following three database models.
First, Multi-tenant relational database. This database
model allows tenants to use a ready relational database
structure for a business domain database without any need
of extending on the existing database structure, and this
business domain database can be shared between multiple
tenants and differentiate between them by using a Tenant
ID. This model can be applied to any business domain
database. Second, Combined multi-tenant relational
database and virtual relational database. This database
model allows tenants to use a ready relational database
structure of a particular business domain with the ability of

extending on this relational database. By adding more
virtual database tables, and creating virtual relationships
between them to combine the virtual tables with the
existing relational database table structure. Third, Multi-
tenant Virtual relational database. This database model
allows tenants to use their own configurable database
through creating their virtual database structures from
scratch, by creating virtual database tables, virtual
database relationships between the virtual tables, and other
database constraints to satisfy their special business
requirements for their business domain applications.

The EETPS provides functions which allow tenants to
build their web, mobile, and desktop applications without
the need of writing SQL queries and backend data
management codes. Instead, retrieving their data by simply
calling these functions, which return a two dimensional
array (Object [n] [m]). Where n denotes the number of
array rows that represents a number of retrieved table
rows, and m denotes the number of array columns that
represents a number of retrieved table columns for a
particular virtual table. This two dimensional array stores
the virtual table row in a structure, which is similar to any
physical database table, and in return will facilitate
accessing virtual rows from any VET as well as CTT.
These functions were designed and built to retrieve
tenants’ data from the following tables:

� One table, either a CTT or a VET.
� Two tables, which have one-to-one, one-to-many,

many-to-many, or self-referencing virtual
relationships. These relationships can be between
two VETs, two CTTs, or one VET and one CTT.

� Two tables, which may have or not have a
relationship between them, by using different types
of joins including left join, right join, inner join,
outer join, left excluding join, right excluding join,
and outer excluding join. The join operation can be
used between two VETs, two CTTs, or one VET
and one CTT.

� Two tables or more, which may have or not have a
relationship between them, by using the union
operator that combines the result-set of these tables
whether they are CTTs or VETs.

� Two or more tables, which have a relationship
between them, by using filters on multiple tables, or
filtering the data based on the results of subqueries.

Moreover, the EETPS functions have the capabilities
of retrieving data from CTTs or VETs by using the
following query options: specifying query SELECT
clause, specifying query WHERE clause, specifying query
LIMIT, using single or composite primary keys, retrieving
BLOB and CLOB values, logical operators, arithmetic
operators, aggregate functions, and mathematical
functions.

V. ELASTIC EXTENSION TABLES ACCESS CONTROL

In this section, we are defining the access control data
architecture which is based on Elastic Extension Tables. In
addition, we are defining Elastic Extension Tables access
grants, which are granted to tenants’ users to access a table
columns and rows stored in the elastic multi-tenant
database schema.

872872

GROUP

ROLEROLE_COLUMN

GROUP_ROLE

USER_ROLE

USER_GROUP

PERMISSION

CAPABILITY

ROLE_INFORMATION_
SCHEMA_COLUMN

INFORMATION_SCHEMA.
COLUMN

TENANT

USER

Relationships of Access Control tables

Relationships of ET tables
Virtual Relationships

Access control tables
Access control join tables

Extension Tables (ET)
Information_schema column view

TABLE_
RELATIONSHIP

TABLE_
INDEX

TABLE_
PRIMARY_KEY_

COLUMN

TABLE_
ROW

TABLE_
ROW_BLOB

TABLE_
ROW_CLOB

TABLE_
COLUMN

DB_TABLE

Extension Tables Access Control Tables

Self-referencing relationship

Fig. 2 EET Access Control Data Architecture

A. Access Control Tables
There are three types of EETAC tables to store tenants’

access control configurations. The first type is the main
entity tables of access control data architecture. The
second type is the join tables, and the third type is the
Information_Schema view. These tables are listed below:

1) Access Control Main Entity Tables: These tables
are listed below and illustrated in a blue colour in Fig. 2.

� Tenant Table. This table stores the tenants’
information details. The Tenant ID column of this
table is used to isolate the tenants’ data, which is
stored in a CTT or a VET. This isolation is applied
by having a master-details relationship between
this table and any CTT or VET. By adding the
Tenant ID column as a reference column to a CTT
or a VET, to refer the data in any of these tables to
an existing tenant who has a unique Tenant ID in
the Tenant table.

� User Table. Each tenant in the multi-tenant
database can have multiple users accessing the
tenant’s data. This table can store three types of
these users. The first type is an admin or a super
user. The second type is a single user. The third
type is a parent-child user, which allows tenants to
have an admin or a super user and assign to this
user one or more users by using the self-
referencing relationship, which this table has. Each
user type can have different levels of database
access based on groups and/or roles they associated
with.

� Group Table. This table is used to define different
levels of a tenants’ group. Any of these groups
logically associating users with similar data access
needs. Once a tenant group is defined, some roles,
which have granted permissions assigned to that
group. Then, any tenant user who is associated
with the group inherits all of the permissions
granted to that group.

� Role Table. Tenants’ users and groups can have
roles, which are granted permissions needed to

perform database activities on a tenant’s data among
multiple tenants’ data, which is stored in a multi-
tenant database. In addition, this role table is
granted permissions for both types of tables CTTs
and VETs.

� Capability Table. This table allows tenants to
authorise their user privileges to any operation
performed upon data. These operations have
different access levels including full access,
read/write access, read access, and other access
types.

2) Access Control Join Tables: These tables are used
to establish many-to-many relationships between the
access control main entities, and the join tables listed
below and illustrated in a yellow colour in Fig. 2.

� User_Group Table. This join table is used to
allocate an access classification level between
groups and tenants’ users. Typically this allocation
is used to group users like administrator users,
super users, or public users.

� Group_Role Table. This join table is used to
authorise a group of users to access one or more
database access roles, and any user who is
allocated to this group will inherit all the
permissions which are granted to the group.

� User_Role Table. This join table is used to
authorise a user to access one or more database
access roles.

� Role_Column Table. This join table is used to
allocate a role to access some or all the tenant’s
VET columns. Once the tenant has this allocation,
he/she can add business rules to access some or all
rows from these VET columns. The details of these
business rules are presented in section B.

� Permission Table. This join table is used to
allocate roles to different kinds of database access
capabilities such as full access, read/write access,
read access, and other access types.

� Role_Information_Schema_Column Table. The
purpose of this join table is similar to the purpose

873873

of the Role_Column Table. However, this join
table allocates a role to access some or all the
tenant’s CTT columns, once the tenant has this
allocation, he/she can add business rules to access
some or all rows from these CTT columns.

3) Information_Schema.column View: This view
allows getting information about columns for tables and
views within the PostgreSQL database [20]. This
Information_Schema view is also used by databases like
Oracle, Mysql, and others. We are using this view in the
EETAC data architecture to give access grants for tenants’
users to access CTTs columns. This view is illustrated in a
red colour in Fig. 2.

B. Elastic Extension Tables Access Grants
EETAC has two main types of grants. The first type is

Group Access Grant, in which a user is assigned to a
group, and this user inherits all of the roles granted to that
group. The second type is Role Access Grant, in which a
user is assigned to a role assigned to a user directly or
inherited via a group. To allow the user to access CTTs or
VETs in the EET database schema. The two types of
grants are shown in Fig. 3. The group access grant is
illustrated in the blue arrows, and the role access grant is
illustrated in the grey arrow.

Fig. 3 EET access control grants

These two main types of grants have two subtypes of
grants. Table Columns Access Grant, and Table Rows
Access Grant. These access grants control the access of
multi-tenant data in CTTs and VETs. Since CTTs and
VETs are using the Tenant ID to isolate the tenants’ data in
EET multi-tenant database and divide it into partitions,
then each single tenant can have his/her own partitions to
store their own data. Moreover, these partitions are divided
by tenants’ users according to these two grants, which are
discussed in details, in the following two points:

� Table Columns Access Grant. This grant allows
tenants to give user permissions to access some or
all columns of a CTT or a VET. These permissions
can restrict tenants’ users from accessing some or
all columns of a table. For example, Fig 3 is
showing two types of users, the first user is a super
user called Adam, who has roles which can access
all the table’s columns of a table. The second user is
Abraham who has roles which can access only three
columns of the same table that Adam can access. In
addition, this grant helps in deciding the optimal
query execution plans, by knowing whether a user
can access all, or some of a table columns. In the
case when a user can access some of the table’s
columns, these columns can be retrieved from the
table by generating a query structure different from
the structure of retrieving all the columns.

Fig. 4 Table columns access grant

� Table Rows Access Grant. This grant allows tenants
to offer user permissions to access some or all rows
of a CTT or a VET. These permissions can restrict
tenants’ users from accessing some or all rows of a
table. For example, Fig. 5 is showing the same users
who were shown in Fig.4, but this time Adam has
roles that can access all the table’s columns and
rows, and Abraham has roles that can access all
columns, but only some rows of the same table that
Adam can access. Also, this grant optimizing the
query execution by considering the number of rows
which are accessed by a user, and generating a
query structure different from the structure of
retrieving all the table rows.

Fig. 5 Table rows access grant

VI. COLUMNS AND ROWS ACCESS GRANT ALGORITHM

In this section, we are presenting an access control
algorithm which is used to allow tenants’ users to access
the data granted to them when they assigned roles
permitted to access columns and rows of a CTT or a VET.
This algorithm invokes two other subsidiary algorithms
that presented in this section.

A. Get User Query Access Main Algorithm
This access control main algorithm defines the

SELECT and the WHERE clauses and returns their values,
by determining which columns and rows a user can access.
These SELECT and WHERE clauses are used to construct
the user’s query statement, which retrieves data from a
CTT or a VET based on access grants assigned to the user.
The details of this algorithm are shown in Algorithm 1.

Definition 1 (Get User Query Access). T denotes a
tenant ID. U denotes a tenant’s user. B denotes a table
name. S denotes a string of the SELECT clause parameter.
Q denotes the table type whether it is a CTT or a VET.
������� denotes a CTT or a VET columns. � denotes an
empty set. 	
���
� denotes a set of user roles returned by
calling GetUserRoles algorithm.

���
� denotes a row
matrix with 1 row and 2 columns which has two elements,
the first one is

���
� �,� that denotes the tenant’s user
SELECT clause attributes, and the second one is

���
� �,� that denotes the access control part of the
tenant’s user Where clause. The values of

���
� returned
by calling GetUserColumns algorithm. ��������� denotes

874874

a string of query SELECT clause. ������
� denotes a
string of query WHERE clause. ���
���
� denotes a row
matrix with 1 row and 2 columns which has two elements,
the first one is ���
���
� �,� that stores into it the value of
��������� , and the second one is ���
���
� �,� that stores
into it the value of ������
� .

Algorithm 1: GetUserQueryAccess (T, U, B, S, Q)

Input: T, U, B, S, and Q
Output: ���
���
�

1. if Q = CTT then
2. ������� ← retrieve the number of columns for a CTT from

role_information_schema_column table by using T and B query
filters

3. else
4. ������� ← retrieve number of columns for a VET from

table_column extension table by using T and B query filters
5. end if
6. 	
���
� ← getUserRoles(T, U, B, Q)
7.

���
� ← getUserColumns (T, U, B, Q, 	
���
�)
8. if size of ������� = size of

���
� �,� then
9. if S = � then
10. ��������� ← �
11. else
12. ��������� ← S
13. end if
14. else
15. if S = � then
16. ��������� ← �
17. else
18. ��������� ← S ∩

���
� �,�

19. end if
20. end if
21. if

���
� �,� ≠ � then
22. ������
� ←

���
� �,�

23. else
24. ������
� ← �
25. end if
26. ���
���
� �,� ← ���������

27. ���
���
� �,� ← ������
�

28. Return ���
���
�

B. Get User Roles Subsidiary Algorithm
This access control subsidiary algorithm is used to

retrieve the tenant’s user roles assigned to CTT or VET
columns. The details of this algorithm are shown in
Algorithm 2.

Definition 2 (Get User Roles). T denotes a tenant ID.
U denotes a tenant’s user. B denotes a table name. S
denotes a string of the SELECT clause parameter. Q
denotes the table type whether it is a CTT or a VET.
	����� denotes a set of role ID values assigned for a CTT
or a VET. 	�
��� denotes a set of role ID values assigned
to the tenant’s user groups. 	���
 denotes a set of role ID
values assigned to the tenant’s user. 	�� denotes a role ID.
	� is a flag used in the algorithm to check whether any of
 	���
 and 	�
��� elements exist in 	����� . 	
���
�

denotes a set of role ID values, which the tenant’s user can
access. � denotes an empty set.

Algorithm 2: GetUserRoles (T, U, B, Q)

Input: T, U, B, and Q
Output: 	
���
�

1. if Q = CTT then
2. 	����� ← retrieve roles assigned to a CTT from

role_information_schema_column table by using T and B query
filters

3. else
4. 	����� ← retrieve roles assigned to a VET from the role_column

table by using T and B query filters
5. end if
6. 	�
���← retrieve roles assigned to U from the group_role table by

using T, and U query filters
7. 	���
 ← retrieve roles assigned to U from user_role table by using T,

and U query filters
8. 	
���
� ← �
9. � ← 0

10. for all 	����� do
11. 	�� ← 	����� �

12. if 	�� ∈ 	�
��� � 	�� ∈ 	���
 then
13. 	� ← true
14. exit loop
15. end if
16. � ← � + 1

17. end for
18. if 	� ≠ true then
19. 	
���
� ← 	�
���

20. " ← 0

21. for all 	���
 do
22. 	�� ← 	���
 #
23. if 	�� � 	
���
� then
24. 	
���
� ← 	
���
� � 	��

25. end if
26. " ← " + 1

27. end for
28. end if
29. Return 	
���
�

C. Get User Columns Subsidiary Algorithm
This access control subsidiary algorithm is used to

retrieve columns and columns’ rules granted to a tenant’s
user. The details of this algorithm are shown in Algorithm
3.

Definition 3 (Get User Columns). T denotes a tenant
ID. U denotes a tenant’s user. B denotes a table name. S
denotes a string of the SELECT clause parameter. Q
denotes the table type whether it is a CTT or a VET.
���

denotes the tenant's user Columns and columns’ rules
retrieved from the role_column access control table, and
stored in a matrix with n rows and 2 columns. Where

���
 �,� is the first column of the matrix which represents
the tenant’s user columns, and
���
 �,� is the second
column of the matrix which represents the tenant’s user
columns’ rules.
�� denotes a column ID.
������ denotes a
set that is storing a table columns values which constructs
the tenant’s user query SELECT clause, where
������ =
{
������ �,
������ $, ...
������ �}. Each element in this set
represents a column name in B.
���
� denotes a string

875875

that is storing the access control part of the query WHERE
clause, which typically is used to grant rows access to
tenant’s users.

���
� denotes a row matrix with 1 row
and 2 columns which has two elements, the first one is

���
� �,� that stores the value of
������, and the second
one is

���
� �,� that stores the value of
���
�. 	
���
�

denotes a set of roles the tenant’s user can access.

Algorithm 3: GetUserColumns(T, U, B, �, 	
���
�)

Input: T, U, B, Q, and 	
���
�

Output:

���
�

1. if Q = CTT then
2.
���
 ← retrieve columns and columns’ rules for U who has 	
���
�

from role_information_schema_column table by using T, U, B, and
	
���
� query filters

3. else
4.
���
 ← retrieve columns and columns rules for U who has 	
���
�

from role_column table by using T, U, B, and 	
���
� query
filters

5. end if
6. � ← 0

7. for all
���
 do
8.
������ � ←
���
 �,�

9.
���
� ←
���
� �
���
 �,�

10. � ← � + 1

11. end for
12.

���
� �,� ←
������
13.

���
� �,� ←
���
�

14. Return

���
�

VII. EXPERIMENTS

After developing the EETPS [15], we applied on this
service the EETAC method that we propose in this paper,
and we carried out two types of experiments to verify the
practicability of applying our EETAC on the EETPS. We
have evaluated the response time through invoking the
EETPS functions, which converts multi-tenant queries into
traditional database queries, instead of accessing the
database directly.

A. Experimental Setup
The EETAC method was implemented in Java 1.6.0,

Hibernate 4.0, and Spring 3.1.0. The database is
PostgreSQL 8.4 and the application server is Jboss-
5.0.0.CR2. Both of database and application server is
deployed on the same PC. The operating system is
Windows 7 Home Premium, CPU is Intel Core i5
2.40GHz, the memory is 8 GB, and the hard disk is 500
GB.

B. Experimental Data Set
The EETPS has designed and developed to serve

multiple tenants on one instance application [15].
However, in this paper the aim of the experiments is
evaluating the performance after applying the EETAC
method on the EETPS for one tenant. We executed the
experiments for one tenant, because, in the multi-tenant
database the data of each tenant’s user is isolated in a table
partition. Thus, these experiments can evaluate the
effectiveness of retrieving data for each single tenant’s
user from the multi-tenant database. In our experiment, we
used one machine and invoked the function which

retrieves a 100 of rows from the ‘product’ VET, which is
shown in Fig. 6. There are 200,000 rows stored in this
table that belongs to a tenant whose “tenant_id” equals
1000, and the “db_table_id” of this table equals 16. All the
queries implemented in these experiments, are filtered by
tenant_id, db_table_id, and other filters specified in the
below experiments. These experiments are divided into
two types sharing the details of this data set. The
experiments are listed below, and the queries of these
experiments are shown in Appendix 1.

1) Accessing Data from Table Columns Experiment
(Exp.1): In this experiment, we executed Query 1 (Q1) and
Query 2 (Q2) to benchmark the query execution time
difference between a tenant’s user who can access data
from all columns of a table by executing Q1, and another
tenant’s user who can access data from only three out of
eight columns of the same table by executing Q2.

2) Accessing Data from Table Rows Experiment
(Exp.2): In this experiment, we executed Query 1 (Q1) and
Query 3 (Q3) to benchmark the query execution time
difference between a tenant’s user who can access data
from all the table rows by executing Q1, and another
tenant’s user who can access 10% of the table data which
equals approximately 20,000 rows by executing Q3.

FIG. 6 THE ‘PRODUCT’ TABLE COLUMNS.

C. Experimental Results
1) Accessing Data from Table Columns Experimental

Results: Typically, users are granted access to table
columns from the application level, because, in a single-
tenant database, users are not granted database access on
the column level. Whereas, the EETAC method, is
granting users a database access on the column level. This
capability reduces the query execution time in the multi-
tenant database. The experimental study of Exp.1 is
showing that the execution time of Q1 for a user who can
access fewer numbers of columns of a table is less than the
execution time of Q2 for a user who can access all of the
table columns. The details results of this experiment are
shown in Table 1.

2) Accessing Data from Table Rows Experiment
Results: Typically, users cannot be granted a database
access to table rows from the database. Whereas, the
EETAC method, is granting users a database access on the
row level. This capability reduces the query execution
time in the multi-tenant database. The experimental study
of Exp. 2 is showing that the execution time of Q3 for a
user who can access a percentage of a table rows is less
than the execution time of Q1 for a user who can access all
the table rows. The details results of this experiment are
shown in Table 1.

TABLE I. THE QUERY EXECUTION TIME OF EXP. 1 AND EXP.2

Experiment Query executed Time in seconds
Exp. 1 Q1 1.35
Exp. 1 Q2 1.10
Exp. 2 Q1 1.45
Exp. 2 Q3 0.48

876876

VIII. CONCLUSION

In this paper, we have proposed a multi-tenant access
control method, called Elastic Extension Table Access
Control (EETAC) that allows each tenant in a multi-tenant
database to have several users with different types of
access grants to access the tenant’s data. The concept of
retrieving data from the multi-tenant database is slightly
different from the single-tenant database. Single-tenant
database does not differentiate between the data of
different tenants’ users. Whereas, the data of the multi-
tenant database is partitioned by differentiating between
the data owned by a particular tenant, and by accessing
columns and rows granted to a tenants’ users based on a
number of groups or roles assigned to them.

Furthermore, we carried out two types of experiments
and we verified the practicability of applying the proposed
access table columns and rows grants on the EETPS. The
first experiment verified that the cost of executing a query
for a user who can access some numbers of columns of a
VET is less than the cost of executing the same query for a
user, who can access all the VET columns. The second
experiment verified that the cost of executing a query for a
user who can access a percentage of a VET rows is less
than the cost of executing the same query for a user, who
can access all of the VET rows.

APPENDIX 1
Q 1: SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id
FROM table_row tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16
AND tr.table_row_id IN (SELECT distinct tr.table_row_id FROM
table_row tr WHERE tr.tenant_id = 1000 AND tr.db_table_id = 16 AND
tr.table_column_id = 50 AND (cast(value as numeric) > '9000'))
ORDER BY 3,4 LIMIT 800 OFFSET 0 [15]

Q2: SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16 AND
tr.table_column_id in (47,48,49) AND tr.table_row_id IN (SELECT distinct
tr.table_row_id FROM table_row tr WHERE tr.tenant_id = 1000 AND
tr.db_table_id = 16 AND tr.table_column_id = 50 AND (cast(value as
numeric) > '9000')) ORDER BY 3,4 LIMIT 800 OFFSET 0 [15]

Q3: SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id
FROM table_row tr WHERE tr.tenant_id =1000 AND tr.db_table_id = 16
AND tr.table_row_id IN (SELECT distinct tr.table_row_id FROM
table_index tr WHERE tr.tenant_id = 1000 AND tr.db_table_id = 16 AND
tr.table_column_id = 50 AND (cast(row_value as numeric) > '9000'))
ORDER BY 3,4 LIMIT 800 OFFSET 0 [15]

REFERENCES
[1] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, "Towards an

elastic and autonomic multitenant database," in Networking Meets
Databases, Athens, Greece, 2011.

[2] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T.
Freeman, "A flexible attribute based access control method for grid
computing," Journal of Grid Computing, vol. 7, no. 2, 2009, pp.
169-180.

[3] C. D. Weissman, and S. Bobrowski, "The design of the force.com
multitenant internet application development platform," in
international conference on Management of Data, Rhode Island,
USA, 2009, pp. 889-896.

[4] C. Weissman, D. Moellenhoff, S.Wong, and P. Nakada, "Query
optimization in a multi-tenant database system,” U.S. Patent 8 229
922, July 24, 2012.

[5] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A.
Hart, "Enabling multi-tenancy: An industrial experience report," in
Software Maintenance,Timisoara, Romania, 2010, pp. 1-8.

[6] D. Arnold, S. Diniro, V. Lee, S. Musker, and J. A. Woods, "Row
and column access control," in Unleashing DB2 10 for Linux,
UNIX, and Windows, vol. 10, no. 1, 2012, pp.65-86.

[7] D. F. Ferraiolo and D. R. Kuhn, "Role-Based Access Controls," in
15th NIST-NCSC National Computer Security Conference
Gaithersburg, USA, 1992, pp. 554-563.

[8] D. Li, C. Liu, Q. Wei, Z. Liu, and B. Liu, “RBAC-based access
control for SaaS systems,” in Information Engineering and
Computer Science, Wuhan, China, 2010, pp. 1-4.

[9] E. J. Domingo, J. T. Nino, A. L. Lemos, M. L. Lemos, R. C.
Palacios, and J. M. G. Berbís, " CLOUDIO: A cloud computing
oriented multi-tenant architecture for business information
systems," in Cloud Computing, Miami, USA, 2010, pp.532-533.

[10] F. Chong, G. Carraro, and R. Wolter. (2013, July 10). Multi-tenant
data architecture [Online]. Available:
http://msdn.microsoft.com/en-us/library/aa479086.aspx.

[11] F. S. Foping, I. M. Dokas, J. Feehan, and S. Imran, “A new hybrid
schema-sharing technique for multitenant applications,” in Digital
Information Management, Michigan, USA, 2009, pp. 1-6.

[12] G. Liu, “Research on independent saas platform,” in Information
Management and Engineering, Chengdu, China, 2010, pp. 110-113.

[13] H. Takabi, J. B. Joshi, and G. J. Ahn, "Security and privacy
challenges in cloud computing environments,” IEEE Security and
Privacy, vol. 8, no. 6, 2010, pp. 24-31.

[14] H. Yaish, M. Goyal, and G. Feuerlicht, "An elastic multi-tenant
database schema for software as a service,” in Ninth IEEE
International Conference on Dependable, Autonomic and Secure
Computing, Sydney, Australia, 2011, pp. 737-743.

[15] H. Yaish, M. Goyal, and G. Feuerlicht, "Proxy service for multi-
tenant database access," in The International Cross Domain
Conference and Workshop, Regensburg, Germany, 2013, pp.100-
117.

[16] J. Du, H. Y. Wen, and Z. J. Yang, “Research on data layer structure
of multi-tenant e-commerce system,” in IEEE 17th International
Conference on Industrial Engineering and Engineering
Management, Xiamen, China, 2010, pp. 362-365.

[17] K. Brodersen, T. M. Rothwein, M. S. Malden, M. J. Chen, and A.
Annadata, "Database access method and system for user role
defined access,” U.S. Patent 6 732 100, May 4, 2004.

[18] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, no. 1, 2012, pp. 69-73.

[19] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang, "Native
support of multi-tenancy in RDBMS for software as a service,” in
Proceedings of the 14th International Conference on Extending
Database Technology, Uppsala, Sweden, 2011, pp.117-128.

[20] PostgreSQL. (2013, July 10) Columns [Online]. Available:
http://www.postgresql.org/docs/8.3/static/infoschema-
columns.html.

[21] R. Anderson, “Technical perspective: A chilly sense of security,”
Communications of the ACM, vol. 52, no. 5, 2009, pp. 90-90.

[22] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining
different multi-tenancy patterns in service-oriented applications,” in
Enterprise Distributed Object Computing Conference, Auckland,
New Zealand, 2009, pp. 131-140.

[23] Salesforce, "Record-level access: Under the hood," white paper,
salesforce.com, inc., July 5, 2013.

[24] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold, “A comparison
of flexible schemas for software as a service,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of
data, Rhode Island, USA, 2009, pp. 881-888.

[25] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,
"Multi-tenant databases for software as a service: schema-mapping
techniques," in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, Vancouver,
Canada, 2008, pp. 1195-1206.

[26] T. Kwok, T. Nguyen, and L. Lam, “A software as a service with
multi-tenancy support for an electronic contract management
application,” in Services Computing, Honolulu, USA, 2008,
pp.179-186.

[27] V. Lazarov, “Comparison of different implementations of multi-
tenant databases,” B.A. thesis, Technische niversität München,
München, Germany, 2007.

877877

